
pipenv Documentation
2018.11.15.dev0

Kenneth Reitz

2019 03 27

Contents

1 Install Pipenv Today! 3
1.1 Pipenv & Virtual Environments . 4
1.2 Release and Version History . 8

2 User Testimonials 21

3 Pipenv Features 23
3.1 Basic Concepts . 23
3.2 Other Commands . 23

4 Further Documentation Guides 25
4.1 Basic Usage of Pipenv . 25
4.2 Advanced Usage of Pipenv . 33
4.3 Frequently Encountered Pipenv Problems . 44

5 Contribution Guides 47
5.1 Development Philosophy . 47
5.2 Contributing to Pipenv . 47

6 Pipenv Usage 51

7 Indices and tables 53

i

ii

pipenv Documentation, 2018.11.15.dev0

Pipenv is a tool that aims to bring the best of all packaging worlds (bundler, composer, npm, cargo, yarn, etc.) to the
Python world. Windows is a first-class citizen, in our world.

It automatically creates and manages a virtualenv for your projects, as well as adds/removes packages from your
Pipfile as you install/uninstall packages. It also generates the ever-important Pipfile.lock, which is used to
produce deterministic builds.

Pipenv is primarily meant to provide users and developers of applications with an easy method to setup a working
environment. For the distinction between libraries and applications and the usage of setup.py vs Pipfile to
define dependencies, see Pipfile vs setup.py.

The problems that Pipenv seeks to solve are multi-faceted:

• You no longer need to use pip and virtualenv separately. They work together.

• Managing a requirements.txt file can be problematic, so Pipenv uses Pipfile and Pipfile.lock
to separate abstract dependency declarations from the last tested combination.

• Hashes are used everywhere, always. Security. Automatically expose security vulnerabilities.

• Strongly encourage the use of the latest versions of dependencies to minimize security risks arising from out-
dated components.

• Give you insight into your dependency graph (e.g. $ pipenv graph).

• Streamline development workflow by loading .env files.

You can quickly play with Pipenv right in your browser:

Contents 1

https://pypi.python.org/pypi/pipenv
https://pypi.python.org/pypi/pipenv
https://pypi.python.org/pypi/pipenv
https://www.kennethreitz.org/essays/a-better-pip-workflow
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://rootnroll.com/d/pipenv/

pipenv Documentation, 2018.11.15.dev0

2 Contents

CHAPTER 1

Install Pipenv Today!

If you’re on MacOS, you can install Pipenv easily with Homebrew:

$ brew install pipenv

Or, if you’re using Fedora 28:

$ sudo dnf install pipenv

Otherwise, refer to the Installing Pipenv chapter for instructions.

3

pipenv Documentation, 2018.11.15.dev0

1.1 Pipenv & Virtual Environments

This tutorial walks you through installing and using Python packages.

It will show you how to install and use the necessary tools and make strong recommendations on best practices.
Keep in mind that Python is used for a great many different purposes, and precisely how you want to manage your
dependencies may change based on how you decide to publish your software. The guidance presented here is most
directly applicable to the development and deployment of network services (including web applications), but is also
very well suited to managing development and testing environments for any kind of project.

: This guide is written for Python 3, however, these instructions should work fine on Python 2.7—if you are still using
it, for some reason.

1.1.1 Make sure you’ve got Python & pip

Before you go any further, make sure you have Python and that it’s available from your command line. You can check
this by simply running:

$ python --version

You should get some output like 3.6.2. If you do not have Python, please install the latest 3.x version from python.org
or refer to the Installing Python section of The Hitchhiker’s Guide to Python.

: If you’re newcomer and you get an error like this:

4 Chapter 1. Install Pipenv Today!

https://python.org
http://docs.python-guide.org/en/latest/starting/installation/

pipenv Documentation, 2018.11.15.dev0

>>> python
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'python' is not defined

It’s because this command is intended to be run in a shell (also called a terminal or console). See the Python for
Beginners getting started tutorial for an introduction to using your operating system’s shell and interacting with Python.

Additionally, you’ll need to make sure you have pip available. You can check this by running:

$ pip --version
pip 9.0.1

If you installed Python from source, with an installer from python.org, or via Homebrew you should already have pip.
If you’re on Linux and installed using your OS package manager, you may have to install pip separately.

If you plan to install Pipenv using Homebrew you can skip this step. The Homebrew installer takes care of pip for you.

1.1.2 Installing Pipenv

Pipenv is a dependency manager for Python projects. If you’re familiar with Node.js’ npm or Ruby’s bundler, it is
similar in spirit to those tools. While pip can install Python packages, Pipenv is recommended as it’s a higher-level
tool that simplifies dependency management for common use cases.

Homebrew Installation of Pipenv

Homebrew is a popular open-source package management system for macOS.

Installing pipenv via Homebrew will keep pipenv and all of its dependencies in an isolated virtual environment so it
doesn’t interfere with the rest of your Python installation.

Once you have installed Homebrew simply run:

$ brew install pipenv

To upgrade pipenv at any time:

$ brew upgrade pipenv

Pragmatic Installation of Pipenv

If you have a working installation of pip, and maintain certain “toolchain” type Python modules as global utilities in
your user environment, pip user installs allow for installation into your home directory. Note that due to interaction
between dependencies, you should limit tools installed in this way to basic building blocks for a Python workflow like
virtualenv, pipenv, tox, and similar software.

To install:

$ pip install --user pipenv

: This does a user installation to prevent breaking any system-wide packages. If pipenv isn’t available in your shell
after installation, you’ll need to add the user base’s binary directory to your PATH.

1.1. Pipenv & Virtual Environments 5

https://opentechschool.github.io/python-beginners/en/getting_started.html#what-is-python-exactly
https://python.org
https://brew.sh
https://pip.pypa.io/en/stable/installing/
https://www.npmjs.com/
http://bundler.io/
https://brew.sh
https://pip.pypa.io/en/stable/user_guide/#user-installs
https://pip.pypa.io/en/stable/user_guide/#user-installs
https://docs.python.org/3/library/site.html#site.USER_BASE

pipenv Documentation, 2018.11.15.dev0

On Linux and macOS you can find the user base binary directory by running python -m site --user-base
and adding bin to the end. For example, this will typically print ~/.local (with ~ expanded to the absolute path
to your home directory) so you’ll need to add ~/.local/bin to your PATH. You can set your PATH permanently
by modifying ~/.profile.

On Windows you can find the user base binary directory by running python -m site
--user-site and replacing site-packages with Scripts. For example, this could return
C:\Users\Username\AppData\Roaming\Python36\site-packages so you would need to set
your PATH to include C:\Users\Username\AppData\Roaming\Python36\Scripts. You can set your
user PATH permanently in the Control Panel. You may need to log out for the PATH changes to take effect.

For more information, see the user installs documentation.

To upgrade pipenv at any time:

$ pip install --user --upgrade pipenv

Crude Installation of Pipenv

If you don’t even have pip installed, you can use this crude installation method, which will bootstrap your whole
system:

$ curl https://raw.githubusercontent.com/kennethreitz/pipenv/master/get-pipenv.py |
→˓python

1.1.3 Installing packages for your project

Pipenv manages dependencies on a per-project basis. To install packages, change into your project’s directory (or just
an empty directory for this tutorial) and run:

$ cd myproject
$ pipenv install requests

Pipenv will install the excellent Requests library and create a Pipfile for you in your project’s directory. The
Pipfile is used to track which dependencies your project needs in case you need to re-install them, such as when
you share your project with others. You should get output similar to this (although the exact paths shown will vary):

Creating a Pipfile for this project...
Creating a virtualenv for this project...
Using base prefix '/usr/local/Cellar/python3/3.6.2/Frameworks/Python.framework/
→˓Versions/3.6'
New python executable in ~/.local/share/virtualenvs/tmp-agwWamBd/bin/python3.6
Also creating executable in ~/.local/share/virtualenvs/tmp-agwWamBd/bin/python
Installing setuptools, pip, wheel...done.

Virtualenv location: ~/.local/share/virtualenvs/tmp-agwWamBd
Installing requests...
Collecting requests

Using cached requests-2.18.4-py2.py3-none-any.whl
Collecting idna<2.7,>=2.5 (from requests)

Using cached idna-2.6-py2.py3-none-any.whl
Collecting urllib3<1.23,>=1.21.1 (from requests)

Using cached urllib3-1.22-py2.py3-none-any.whl
Collecting chardet<3.1.0,>=3.0.2 (from requests)

6 Chapter 1. Install Pipenv Today!

https://stackoverflow.com/a/14638025
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776899(v=vs.85).aspx
https://pip.pypa.io/en/stable/user_guide/#user-installs
https://python-requests.org

pipenv Documentation, 2018.11.15.dev0

Using cached chardet-3.0.4-py2.py3-none-any.whl
Collecting certifi>=2017.4.17 (from requests)

Using cached certifi-2017.7.27.1-py2.py3-none-any.whl
Installing collected packages: idna, urllib3, chardet, certifi, requests
Successfully installed certifi-2017.7.27.1 chardet-3.0.4 idna-2.6 requests-2.18.4
→˓urllib3-1.22

Adding requests to Pipfile's [packages]...
P.S. You have excellent taste!

1.1.4 Using installed packages

Now that Requests is installed you can create a simple main.py file to use it:

import requests

response = requests.get('https://httpbin.org/ip')

print('Your IP is {0}'.format(response.json()['origin']))

Then you can run this script using pipenv run:

$ pipenv run python main.py

You should get output similar to this:

Your IP is 8.8.8.8

Using $ pipenv run ensures that your installed packages are available to your script. It’s also possible to spawn a
new shell that ensures all commands have access to your installed packages with $ pipenv shell.

1.1.5 Virtualenv mapping caveat

• Pipenv automatically maps projects to their specific virtualenvs.

• The virtualenv is stored globally with the name of the project’s root directory plus the hash of the full path to
the project’s root (e.g., my_project-a3de50).

• If you change your project’s path, you break such a default mapping and pipenv will no longer be able to find
and to use the project’s virtualenv.

• You might want to set export PIPENV_VENV_IN_PROJECT=1 in your .bashrc/.zshrc (or any shell config-
uration file) for creating the virtualenv inside your project’s directory, avoiding problems with subsequent path
changes.

1.1.6 Next steps

Congratulations, you now know how to install and use Python packages!

1.1. Pipenv & Virtual Environments 7

pipenv Documentation, 2018.11.15.dev0

1.2 Release and Version History

1.2.1 2018.11.26 (2018-11-26)

Bug Fixes

• Environment variables are expanded correctly before running scripts on POSIX.‘#3178 <https://github.com/
pypa/pipenv/issues/3178>‘_

• Pipenv will no longer disable user-mode installation when the --system flag is passed in.‘#3222 <https:
//github.com/pypa/pipenv/issues/3222>‘_

• Fixed an issue with attempting to render unicode output in non-unicode locales.‘#3223 <https://github.com/
pypa/pipenv/issues/3223>‘_

• Fixed a bug which could cause failures to occur when parsing python entries from global pyenv version
files.‘#3224 <https://github.com/pypa/pipenv/issues/3224>‘_

• Fixed an issue which prevented the parsing of named extras sections from certain setup.py files.‘#3230
<https://github.com/pypa/pipenv/issues/3230>‘_

• Correctly detect the virtualenv location inside an activated virtualenv.‘#3231 <https://github.com/pypa/pipenv/
issues/3231>‘_

• Fixed a bug which caused spinner frames to be written to stdout during locking operations which could cause
redirection pipes to fail.‘#3239 <https://github.com/pypa/pipenv/issues/3239>‘_

• Fixed a bug that editable pacakges can’t be uninstalled correctly.‘#3240 <https://github.com/pypa/pipenv/issues/
3240>‘_

• Corrected an issue with installation timeouts which caused dependency resolution to fail for longer duration
resolution steps.‘#3244 <https://github.com/pypa/pipenv/issues/3244>‘_

• Adding normal pep 508 compatible markers is now fully functional when using VCS dependencies.‘#3249
<https://github.com/pypa/pipenv/issues/3249>‘_

• Updated requirementslib and pythonfinder for multiple bugfixes.‘#3254 <https://github.com/pypa/
pipenv/issues/3254>‘_

• Pipenv will now ignore hashes when installing with --skip-lock.‘#3255 <https://github.com/pypa/pipenv/
issues/3255>‘_

• Fixed an issue where pipenv could crash when multiple pipenv processes attempted to create the same direc-
tory.‘#3257 <https://github.com/pypa/pipenv/issues/3257>‘_

• Fixed an issue which sometimes prevented successful creation of project pipfiles.‘#3260 <https://github.com/
pypa/pipenv/issues/3260>‘_

• pipenv install will now unset the PYTHONHOME environment variable when not combined with
--system.‘#3261 <https://github.com/pypa/pipenv/issues/3261>‘_

• Pipenv will ensure that warnings do not interfere with the resolution process by suppressing warnings’ usage of
standard output and writing to standard error instead.‘#3273 <https://github.com/pypa/pipenv/issues/3273>‘_

• Fixed an issue which prevented variables from the environment, such as PIPENV_DEV or PIPENV_SYSTEM,
from being parsed and implemented correctly.‘#3278 <https://github.com/pypa/pipenv/issues/3278>‘_

• Clear pythonfinder cache after Python install‘#3287 <https://github.com/pypa/pipenv/issues/3287>‘_

• Fixed a race condition in hash resolution for dependencies for certain dependencies with missing cache entries
or fresh Pipenv installs.‘#3289 <https://github.com/pypa/pipenv/issues/3289>‘_

8 Chapter 1. Install Pipenv Today!

https://github.com/pypa/pipenv/issues/3178
https://github.com/pypa/pipenv/issues/3178
https://github.com/pypa/pipenv/issues/3222
https://github.com/pypa/pipenv/issues/3222
https://github.com/pypa/pipenv/issues/3223
https://github.com/pypa/pipenv/issues/3223
https://github.com/pypa/pipenv/issues/3224
https://github.com/pypa/pipenv/issues/3230
https://github.com/pypa/pipenv/issues/3231
https://github.com/pypa/pipenv/issues/3231
https://github.com/pypa/pipenv/issues/3239
https://github.com/pypa/pipenv/issues/3240
https://github.com/pypa/pipenv/issues/3240
https://github.com/pypa/pipenv/issues/3244
https://github.com/pypa/pipenv/issues/3249
https://github.com/pypa/pipenv/issues/3254
https://github.com/pypa/pipenv/issues/3254
https://github.com/pypa/pipenv/issues/3255
https://github.com/pypa/pipenv/issues/3255
https://github.com/pypa/pipenv/issues/3257
https://github.com/pypa/pipenv/issues/3260
https://github.com/pypa/pipenv/issues/3260
https://github.com/pypa/pipenv/issues/3261
https://github.com/pypa/pipenv/issues/3273
https://github.com/pypa/pipenv/issues/3278
https://github.com/pypa/pipenv/issues/3287
https://github.com/pypa/pipenv/issues/3289

pipenv Documentation, 2018.11.15.dev0

• Pipenv will now respect top-level pins over VCS dependency locks.‘#3296 <https://github.com/pypa/pipenv/
issues/3296>‘_

Vendored Libraries

• Update vendored dependencies to resolve resolution output parsing and python finding: - pythonfinder 1.1.9 ->
1.1.10 - requirementslib 1.3.1 -> 1.3.3 - vistir 0.2.3 -> 0.2.5‘‘#3280

1.2.2 2018.11.14 (2018-11-14)

Features & Improvements

• Improved exceptions and error handling on failures. #1977

• Added persistent settings for all CLI flags via PIPENV_{FLAG_NAME} environment variables by enabling
auto_envvar_prefix=PIPENV in click (implements PEEP-0002). #2200

• Added improved messaging about available but skipped updates due to dependency conflicts when running
pipenv update --outdated. #2411

• Added environment variable PIPENV_PYUP_API_KEY to add ability to override the bundled pyup.io API key.
#2825

• Added additional output to pipenv update --outdated to indicate that the operation succeded and all
packages were already up to date. #2828

• Updated crayons patch to enable colors on native powershell but swap native blue for magenta. #3020

• Added support for --bare to pipenv clean, and fixed pipenv sync --bare to actually reduce out-
put. #3041

• Added windows-compatible spinner via upgraded vistir dependency. #3089

• – Added support for python installations managed by asdf. #3096

• Improved runtime performance of no-op commands such as pipenv --venv by around 2/3. #3158

• Do not show error but success for running pipenv uninstall --all in a fresh virtual environment.
#3170

• Improved asynchronous installation and error handling via queued subprocess paralleization. #3217

Bug Fixes

• Remote non-PyPI artifacts and local wheels and artifacts will now include their own hashes rather than including
hashes from PyPI. #2394

• Non-ascii characters will now be handled correctly when parsed by pipenv’s ToML parsers. #2737

• Updated pipenv uninstall to respect the --skip-lock argument. #2848

• Fixed a bug which caused uninstallation to sometimes fail to successfullly remove packages from Pipfiles
with comments on preceding or following lines. #2885, #3099

• Pipenv will no longer fail when encountering python versions on Windows that have been uninstalled. #2983

• Fixed unnecessary extras are added when translating markers #3026

• Fixed a virtualenv creation issue which could cause new virtualenvs to inadvertently attempt to read and write
to global site packages. #3047

1.2. Release and Version History 9

https://github.com/pypa/pipenv/issues/3296
https://github.com/pypa/pipenv/issues/3296
https://github.com/pypa/pipenv/issues/3280
https://github.com/pypa/pipenv/issues/1977
https://github.com/pypa/pipenv/issues/2200
https://github.com/pypa/pipenv/issues/2411
https://github.com/pypa/pipenv/issues/2825
https://github.com/pypa/pipenv/issues/2828
https://github.com/pypa/pipenv/issues/3020
https://github.com/pypa/pipenv/issues/3041
https://github.com/pypa/pipenv/issues/3089
https://github.com/pypa/pipenv/issues/3096
https://github.com/pypa/pipenv/issues/3158
https://github.com/pypa/pipenv/issues/3170
https://github.com/pypa/pipenv/issues/3217
https://github.com/pypa/pipenv/issues/2394
https://github.com/pypa/pipenv/issues/2737
https://github.com/pypa/pipenv/issues/2848
https://github.com/pypa/pipenv/issues/2885
https://github.com/pypa/pipenv/issues/3099
https://github.com/pypa/pipenv/issues/2983
https://github.com/pypa/pipenv/issues/3026
https://github.com/pypa/pipenv/issues/3047

pipenv Documentation, 2018.11.15.dev0

• Fixed an issue with virtualenv path derivation which could cause errors, particularly for users on WSL bash.
#3055

• Fixed a bug which caused Unexpected EOF errors to be thrown when pip was waiting for input from users
who had put login credentials in environment variables. #3088

• Fixed a bug in requirementslibwhich prevented successful installation from mercurial repositories. #3090

• Fixed random resource warnings when using pyenv or any other subprocess calls. #3094

• – Fixed a bug which sometimes prevented cloning and parsing mercurial requirements. #3096

• Fixed an issue in delegator.py related to subprocess calls when using PopenSpawn to stream output,
which sometimes threw unexpected EOF errors. #3102, #3114, #3117

• Fix the path casing issue that makes pipenv clean fail on Windows #3104

• Pipenv will avoid leaving build artifacts in the current working directory. #3106

• Fixed issues with broken subprocess calls leaking resource handles and causing random and sporadic failures.
#3109

• Fixed an issue which caused pipenv clean to sometimes clean packages from the base site-packages
folder or fail entirely. #3113

• Updated pythonfinder to correct an issue with unnesting of nested paths when searching for python ver-
sions. #3121

• Added additional logic for ignoring and replacing non-ascii characters when formatting console output on non-
UTF-8 systems. #3131

• Fix virtual environment discovery when PIPENV_VENV_IN_PROJECT is set, but the in-project .venv is a file.
#3134

• Hashes for remote and local non-PyPI artifacts will now be included in Pipfile.lock during resolution.
#3145

• Fix project path hashing logic in purpose to prevent collisions of virtual environments. #3151

• Fix package installation when the virtual environment path contains parentheses. #3158

• Azure Pipelines YAML files are updated to use the latest syntax and product name. #3164

• Fixed new spinner success message to write only one success message during resolution. #3183

• Pipenv will now correctly respect the --pre option when used with pipenv install. #3185

• Fix a bug where exception is raised when run pipenv graph in a project without created virtualenv #3201

• When sources are missing names, names will now be derived from the supplied URL. #3216

Vendored Libraries

• Updated pythonfinder to correct an issue with unnesting of nested paths when searching for python ver-
sions. #3061, #3121

• Updated vendored dependencies:

– certifi 2018.08.24 => 2018.10.15

– urllib3 1.23 => 1.24

– requests 2.19.1 => 2.20.0

– shellingham ``1.2.6 => 1.2.7

10 Chapter 1. Install Pipenv Today!

https://github.com/pypa/pipenv/issues/3055
https://github.com/pypa/pipenv/issues/3088
https://github.com/pypa/pipenv/issues/3090
https://github.com/pypa/pipenv/issues/3094
https://github.com/pypa/pipenv/issues/3096
https://github.com/pypa/pipenv/issues/3102
https://github.com/pypa/pipenv/issues/3114
https://github.com/pypa/pipenv/issues/3117
https://github.com/pypa/pipenv/issues/3104
https://github.com/pypa/pipenv/issues/3106
https://github.com/pypa/pipenv/issues/3109
https://github.com/pypa/pipenv/issues/3113
https://github.com/pypa/pipenv/issues/3121
https://github.com/pypa/pipenv/issues/3131
https://github.com/pypa/pipenv/issues/3134
https://github.com/pypa/pipenv/issues/3145
https://github.com/pypa/pipenv/issues/3151
https://github.com/pypa/pipenv/issues/3158
https://github.com/pypa/pipenv/issues/3164
https://github.com/pypa/pipenv/issues/3183
https://github.com/pypa/pipenv/issues/3185
https://github.com/pypa/pipenv/issues/3201
https://github.com/pypa/pipenv/issues/3216
https://github.com/pypa/pipenv/issues/3061
https://github.com/pypa/pipenv/issues/3121

pipenv Documentation, 2018.11.15.dev0

– tomlkit 0.4.4. => 0.4.6

– vistir 0.1.6 => 0.1.8

– pythonfinder 0.1.2 => 0.1.3

– requirementslib 1.1.9 => 1.1.10

– backports.functools_lru_cache 1.5.0 (new)

– cursor 1.2.0 (new) #3089

• Updated vendored dependencies:

– requests 2.19.1 => 2.20.1

– tomlkit 0.4.46 => 0.5.2

– vistir 0.1.6 => 0.2.4

– pythonfinder 1.1.2 => 1.1.8

– requirementslib 1.1.10 => 1.3.0 #3096

• Switch to tomlkit for parsing and writing. Drop prettytoml and contoml from vendors. #3191

• Updated requirementslib to aid in resolution of local and remote archives. #3196

Improved Documentation

• Expanded development and testing documentation for contributors to get started. #3074

1.2.3 2018.10.13 (2018-10-13)

Bug Fixes

• Fixed a bug in pipenv clean which caused global packages to sometimes be inadvertently targeted for
cleanup. #2849

• Fix broken backport imports for vendored vistir. #2950, #2955, #2961

• Fixed a bug with importing local vendored dependencies when running pipenv graph. #2952

• Fixed a bug which caused executable discovery to fail when running inside a virtualenv. #2957

• Fix parsing of outline tables. #2971

• Fixed a bug which caused verify_ssl to fail to drop through to pip install correctly as
trusted-host. #2979

• Fixed a bug which caused canonicalized package names to fail to resolve against PyPI. #2989

• Enhanced CI detection to detect Azure Devops builds. #2993

• Fixed a bug which prevented installing pinned versions which used redirection symbols from the command line.
#2998

• Fixed a bug which prevented installing the local directory in non-editable mode. #3005

1.2. Release and Version History 11

https://github.com/pypa/pipenv/issues/3089
https://github.com/pypa/pipenv/issues/3096
https://github.com/pypa/pipenv/issues/3191
https://github.com/pypa/pipenv/issues/3196
https://github.com/pypa/pipenv/issues/3074
https://github.com/pypa/pipenv/issues/2849
https://github.com/pypa/pipenv/issues/2950
https://github.com/pypa/pipenv/issues/2955
https://github.com/pypa/pipenv/issues/2961
https://github.com/pypa/pipenv/issues/2952
https://github.com/pypa/pipenv/issues/2957
https://github.com/pypa/pipenv/issues/2971
https://github.com/pypa/pipenv/issues/2979
https://github.com/pypa/pipenv/issues/2989
https://github.com/pypa/pipenv/issues/2993
https://github.com/pypa/pipenv/issues/2998
https://github.com/pypa/pipenv/issues/3005

pipenv Documentation, 2018.11.15.dev0

Vendored Libraries

• Updated requirementslib to version 1.1.9. #2989

• Upgraded pythonfinder => 1.1.1 and vistir => 0.1.7. #3007

1.2.4 2018.10.9 (2018-10-09)

Features & Improvements

• Added environment variables PIPENV_VERBOSE and PIPENV_QUIET to control output verbosity without
needing to pass options. #2527

• Updated test-pypi addon to better support json-api access (forward compatibility). Improved testing process for
new contributors. #2568

• Greatly enhanced python discovery functionality:

– Added pep514 (windows launcher/finder) support for python discovery.

– Introduced architecture discovery for python installations which support different architectures. #2582

• Added support for pipenv shell on msys and cygwin/mingw/git bash for Windows. #2641

• Enhanced resolution of editable and VCS dependencies. #2643

• Deduplicate and refactor CLI to use stateful arguments and object passing. See this issue for reference. #2814

Behavior Changes

• Virtual environment activation for run is revised to improve interpolation with other Python discovery tools.
#2503

• Improve terminal coloring to display better in Powershell. #2511

• Invoke virtualenv directly for virtual environment creation, instead of depending on pew. #2518

• pipenv --help will now include short help descriptions. #2542

• Add COMSPEC to fallback option (along with SHELL and PYENV_SHELL) if shell detection fails, improving
robustness on Windows. #2651

• Fallback to shell mode if run fails with Windows error 193 to handle non-executable commands. This should
improve usability on Windows, where some users run non-executable files without specifying a command,
relying on Windows file association to choose the current command. #2718

Bug Fixes

• Fixed a bug which prevented installation of editable requirements using ssh:// style urls #1393

• VCS Refs for locked local editable dependencies will now update appropriately to the latest hash when running
pipenv update. #1690

• .tar.gz and .zip artifacts will now have dependencies installed even when they are missing from the lock-
file. #2173

• The command line parser will now handle multiple -e/--editable dependencies properly via click’s option
parser to help mitigate future parsing issues. #2279

12 Chapter 1. Install Pipenv Today!

https://github.com/pypa/pipenv/issues/2989
https://github.com/pypa/pipenv/issues/3007
https://github.com/pypa/pipenv/issues/2527
https://github.com/pypa/pipenv/issues/2568
https://github.com/pypa/pipenv/issues/2582
https://github.com/pypa/pipenv/issues/2641
https://github.com/pypa/pipenv/issues/2643
https://github.com/pallets/click/issues/108
https://github.com/pypa/pipenv/issues/2814
https://github.com/pypa/pipenv/issues/2503
https://github.com/pypa/pipenv/issues/2511
https://github.com/pypa/pipenv/issues/2518
https://github.com/pypa/pipenv/issues/2542
https://github.com/pypa/pipenv/issues/2651
https://github.com/pypa/pipenv/issues/2718
https://github.com/pypa/pipenv/issues/1393
https://github.com/pypa/pipenv/issues/1690
https://github.com/pypa/pipenv/issues/2173
https://github.com/pypa/pipenv/issues/2279

pipenv Documentation, 2018.11.15.dev0

• Fixed the ability of pipenv to parse dependency_links from setup.py when
PIP_PROCESS_DEPENDENCY_LINKS is enabled. #2434

• Fixed a bug which could cause -i/--index arguments to sometimes be incorrectly picked up in packages.
This is now handled in the command line parser. #2494

• Fixed non-deterministic resolution issues related to changes to the internal package finder in pip 10. #2499,
#2529, #2589, #2666, #2767, #2785, #2795, #2801, #2824, #2862, #2879, #2894, #2933

• Fix subshell invocation on Windows for Python 2. #2515

• Fixed a bug which sometimes caused pipenv to throw a TypeError or to run into encoding issues when writing
lockfiles on python 2. #2561

• Improve quoting logic for pipenv run so it works better with Windows built-in commands. #2563

• Fixed a bug related to parsing vcs requirements with both extras and subdirectory fragments. Corrected an issue
in the requirementslib parser which led to some markers being discarded rather than evaluated. #2564

• Fixed multiple issues with finding the correct system python locations. #2582

• Catch JSON decoding error to prevent exception when the lock file is of invalid format. #2607

• Fixed a rare bug which could sometimes cause errors when installing packages with custom sources. #2610

• Update requirementslib to fix a bug which could raise an UnboundLocalError when parsing malformed
VCS URIs. #2617

• Fixed an issue which prevented passing multiple --ignore parameters to pipenv check. #2632

• Fixed a bug which caused attempted hashing of ssh:// style URIs which could cause failures during installa-
tion of private ssh repositories. - Corrected path conversion issues which caused certain editable VCS paths to
be converted to ssh:// URIs improperly. #2639

• Fixed a bug which caused paths to be formatted incorrectly when using pipenv shell in bash for windows.
#2641

• Dependency links to private repositories defined via ssh:// schemes will now install correctly and skip hash-
ing as long as PIP_PROCESS_DEPENDENCY_LINKS=1. #2643

• Fixed a bug which sometimes caused pipenv to parse the trusted_host argument to pip incorrectly when
parsing source URLs which specify verify_ssl = false. #2656

• Prevent crashing when a virtual environment in WORKON_HOME is faulty. #2676

• Fixed virtualenv creation failure when a .venv file is present in the project root. #2680

• Fixed a bug which could cause the -e/--editable argument on a dependency to be accidentally parsed as
a dependency itself. #2714

• Correctly pass verbose and debug flags to the resolver subprocess so it generates appropriate output. This also
resolves a bug introduced by the fix to #2527. #2732

• All markers are now included in pipenv lock --requirements output. #2748

• Fixed a bug in marker resolution which could cause duplicate and non-deterministic markers. #2760

• Fixed a bug in the dependency resolver which caused regular issues when handling setup.py based depen-
dency resolution. #2766

• Updated vendored dependencies:

– pip-tools (updated and patched to latest w/ pip 18.0 compatibilty)

– pip 10.0.1 => 18.0

– click 6.7 => 7.0

1.2. Release and Version History 13

https://github.com/pypa/pipenv/issues/2434
https://github.com/pypa/pipenv/issues/2494
https://github.com/pypa/pipenv/issues/2499
https://github.com/pypa/pipenv/issues/2529
https://github.com/pypa/pipenv/issues/2589
https://github.com/pypa/pipenv/issues/2666
https://github.com/pypa/pipenv/issues/2767
https://github.com/pypa/pipenv/issues/2785
https://github.com/pypa/pipenv/issues/2795
https://github.com/pypa/pipenv/issues/2801
https://github.com/pypa/pipenv/issues/2824
https://github.com/pypa/pipenv/issues/2862
https://github.com/pypa/pipenv/issues/2879
https://github.com/pypa/pipenv/issues/2894
https://github.com/pypa/pipenv/issues/2933
https://github.com/pypa/pipenv/issues/2515
https://github.com/pypa/pipenv/issues/2561
https://github.com/pypa/pipenv/issues/2563
https://github.com/pypa/pipenv/issues/2564
https://github.com/pypa/pipenv/issues/2582
https://github.com/pypa/pipenv/issues/2607
https://github.com/pypa/pipenv/issues/2610
https://github.com/pypa/pipenv/issues/2617
https://github.com/pypa/pipenv/issues/2632
https://github.com/pypa/pipenv/issues/2639
https://github.com/pypa/pipenv/issues/2641
https://github.com/pypa/pipenv/issues/2643
https://github.com/pypa/pipenv/issues/2656
https://github.com/pypa/pipenv/issues/2676
https://github.com/pypa/pipenv/issues/2680
https://github.com/pypa/pipenv/issues/2714
https://github.com/pypa/pipenv/issues/2732
https://github.com/pypa/pipenv/issues/2748
https://github.com/pypa/pipenv/issues/2760
https://github.com/pypa/pipenv/issues/2766

pipenv Documentation, 2018.11.15.dev0

– toml 0.9.4 => 0.10.0

– pyparsing 2.2.0 => 2.2.2

– delegator 0.1.0 => 0.1.1

– attrs 18.1.0 => 18.2.0

– distlib 0.2.7 => 0.2.8

– packaging 17.1.0 => 18.0

– passa 0.2.0 => 0.3.1

– pip_shims 0.1.2 => 0.3.1

– plette 0.1.1 => 0.2.2

– pythonfinder 1.0.2 => 1.1.0

– pytoml 0.1.18 => 0.1.19

– requirementslib 1.1.16 => 1.1.17

– shellingham 1.2.4 => 1.2.6

– tomlkit 0.4.2 => 0.4.4

– vistir 0.1.4 => 0.1.6 #2802,

#2867, #2880

• Fixed a bug where pipenv crashes when the WORKON_HOME directory does not exist. #2877

• Fixed pip is not loaded from pipenv’s patched one but the system one #2912

• Fixed various bugs related to pip 18.1 release which prevented locking, installation, and syncing, and dump-
ing to a requirements.txt file. #2924

Vendored Libraries

• Pew is no longer vendored. Entry point pewtwo, packages pipenv.pew and pipenv.patched.pew are
removed. #2521

• Update pythonfinder to major release 1.0.0 for integration. #2582

• Update requirementslib to fix a bug which could raise an UnboundLocalError when parsing malformed
VCS URIs. #2617

• – Vendored new libraries vistir and pip-shims, tomlkit, modutil, and plette.

– Update vendored libraries: - scandir to 1.9.0 - click-completion to 0.4.1 - semver to 2.
8.1 - shellingham to 1.2.4 - pytoml to 0.1.18 - certifi to 2018.8.24 - ptyprocess to
0.6.0 - requirementslib to 1.1.5 - pythonfinder to 1.0.2 - pipdeptree to 0.13.0 -
python-dotenv to 0.9.1 #2639

• Updated vendored dependencies:

– pip-tools (updated and patched to latest w/ pip 18.0 compatibilty)

– pip 10.0.1 => 18.0

– click 6.7 => 7.0

– toml 0.9.4 => 0.10.0

– pyparsing 2.2.0 => 2.2.2

14 Chapter 1. Install Pipenv Today!

https://github.com/pypa/pipenv/issues/2802
https://github.com/pypa/pipenv/issues/2867
https://github.com/pypa/pipenv/issues/2880
https://github.com/pypa/pipenv/issues/2877
https://github.com/pypa/pipenv/issues/2912
https://github.com/pypa/pipenv/issues/2924
https://github.com/pypa/pipenv/issues/2521
https://github.com/pypa/pipenv/issues/2582
https://github.com/pypa/pipenv/issues/2617
https://github.com/pypa/pipenv/issues/2639

pipenv Documentation, 2018.11.15.dev0

– delegator 0.1.0 => 0.1.1

– attrs 18.1.0 => 18.2.0

– distlib 0.2.7 => 0.2.8

– packaging 17.1.0 => 18.0

– passa 0.2.0 => 0.3.1

– pip_shims 0.1.2 => 0.3.1

– plette 0.1.1 => 0.2.2

– pythonfinder 1.0.2 => 1.1.0

– pytoml 0.1.18 => 0.1.19

– requirementslib 1.1.16 => 1.1.17

– shellingham 1.2.4 => 1.2.6

– tomlkit 0.4.2 => 0.4.4

– vistir 0.1.4 => 0.1.6 #2902,

#2935

Improved Documentation

• Simplified the test configuration process. #2568

• Updated documentation to use working fortune cookie addon. #2644

• Added additional information about troubleshooting pipenv shell by using the the $PIPENV_SHELL
environment variable. #2671

• Added a link to PEP-440 version specifiers in the documentation for additional detail. #2674

• Added simple example to README.md for installing from git. #2685

• Stopped recommending –system for Docker contexts. #2762

• Fixed the example url for doing “pipenv install -e some-repo-url#egg=something”, it was missing the “egg=” in
the fragment identifier. #2792

• Fixed link to the “be cordial” essay in the contribution documentation. #2793

• Clarify pipenv install documentation #2844

• Replace reference to uservoice with PEEP-000 #2909

1.2.5 2018.7.1 (2018-07-01)

Features & Improvements

• All calls to pipenv shell are now implemented from the ground up using shellingham, a custom library
which was purpose built to handle edge cases and shell detection. #2371

• Added support for python 3.7 via a few small compatibility / bugfixes. #2427, #2434, #2436

• Added new flag pipenv --support to replace the diagnostic command python -m pipenv.help.
#2477, #2478

• Improved import times and CLI runtimes with minor tweaks. #2485

1.2. Release and Version History 15

https://github.com/pypa/pipenv/issues/2902
https://github.com/pypa/pipenv/issues/2935
https://github.com/pypa/pipenv/issues/2568
https://github.com/pypa/pipenv/issues/2644
https://github.com/pypa/pipenv/issues/2671
https://github.com/pypa/pipenv/issues/2674
https://github.com/pypa/pipenv/issues/2685
https://github.com/pypa/pipenv/issues/2762
https://github.com/pypa/pipenv/issues/2792
https://github.com/pypa/pipenv/issues/2793
https://github.com/pypa/pipenv/issues/2844
https://github.com/pypa/pipenv/issues/2909
https://github.com/sarugaku/shellingham
https://github.com/pypa/pipenv/issues/2371
https://github.com/pypa/pipenv/issues/2427
https://github.com/pypa/pipenv/issues/2434
https://github.com/pypa/pipenv/issues/2436
https://github.com/pypa/pipenv/issues/2477
https://github.com/pypa/pipenv/issues/2478
https://github.com/pypa/pipenv/issues/2485

pipenv Documentation, 2018.11.15.dev0

Bug Fixes

• Fixed an ongoing bug which sometimes resolved incompatible versions into lockfiles. #1901

• Fixed a bug which caused errors when creating virtualenvs which contained leading dash characters. #2415

• Fixed a logic error which caused --deploy --system to overwrite editable vcs packages in the pipfile
before installing, which caused any installation to fail by default. #2417

• Updated requirementslib to fix an issue with properly quoting markers in VCS requirements. #2419

• Installed new vendored jinja2 templates for click-completion which were causing template errors for
users with completion enabled. #2422

• Added support for python 3.7 via a few small compatibility / bugfixes. #2427

• Fixed an issue reading package names from setup.py files in projects which imported utilities such as
versioneer. #2433

• Pipenv will now ensure that its internal package names registry files are written with unicode strings. #2450

• Fixed a bug causing requirements input as relative paths to be output as absolute paths or URIs. Fixed a bug
affecting normalization of git+git@host uris. #2453

• Pipenv will now always use pathlib2 for Path based filesystem interactions by default on python<3.5.
#2454

• Fixed a bug which prevented passing proxy PyPI indexes set with --pypi-mirror from being passed to pip
during virtualenv creation, which could cause the creation to freeze in some cases. #2462

• Using the python -m pipenv.help command will now use proper encoding for the host filesystem to
avoid encoding issues. #2466

• The new jinja2 templates for click_completion will now be included in pipenv source distributions.
#2479

• Resolved a long-standing issue with re-using previously generated InstallRequirement objects for reso-
lution which could cause PKG-INFO file information to be deleted, raising a TypeError. #2480

• Resolved an issue parsing usernames from private PyPI URIs in Pipfiles by updating requirementslib.
#2484

Vendored Libraries

• All calls to pipenv shell are now implemented from the ground up using shellingham, a custom library
which was purpose built to handle edge cases and shell detection. #2371

• Updated requirementslib to fix an issue with properly quoting markers in VCS requirements. #2419

• Installed new vendored jinja2 templates for click-completion which were causing template errors for
users with completion enabled. #2422

• Add patch to prettytoml to support Python 3.7. #2426

• Patched prettytoml.AbstractTable._enumerate_items to handle StopIteration errors in
preparation of release of python 3.7. #2427

• Fixed an issue reading package names from setup.py files in projects which imported utilities such as
versioneer. #2433

• Updated requirementslib to version 1.0.9 #2453

• Unraveled a lot of old, unnecessary patches to pip-tools which were causing non-deterministic resolution
errors. #2480

16 Chapter 1. Install Pipenv Today!

https://github.com/pypa/pipenv/issues/1901
https://github.com/pypa/pipenv/issues/2415
https://github.com/pypa/pipenv/issues/2417
https://github.com/pypa/pipenv/issues/2419
https://github.com/pypa/pipenv/issues/2422
https://github.com/pypa/pipenv/issues/2427
https://github.com/pypa/pipenv/issues/2433
https://github.com/pypa/pipenv/issues/2450
https://github.com/pypa/pipenv/issues/2453
https://github.com/pypa/pipenv/issues/2454
https://github.com/pypa/pipenv/issues/2462
https://github.com/pypa/pipenv/issues/2466
https://github.com/pypa/pipenv/issues/2479
https://github.com/pypa/pipenv/issues/2480
https://github.com/pypa/pipenv/issues/2484
https://github.com/sarugaku/shellingham
https://github.com/pypa/pipenv/issues/2371
https://github.com/pypa/pipenv/issues/2419
https://github.com/pypa/pipenv/issues/2422
https://github.com/pypa/pipenv/issues/2426
https://github.com/pypa/pipenv/issues/2427
https://github.com/pypa/pipenv/issues/2433
https://github.com/pypa/pipenv/issues/2453
https://github.com/pypa/pipenv/issues/2480

pipenv Documentation, 2018.11.15.dev0

• Resolved an issue parsing usernames from private PyPI URIs in Pipfiles by updating requirementslib.
#2484

Improved Documentation

• Added instructions for installing using Fedora’s official repositories. #2404

1.2.6 2018.6.25 (2018-06-25)

Features & Improvements

• Pipenv-created virtualenvs will now be associated with a .project folder (features can be implemented on
top of this later or users may choose to use pipenv-pipes to take full advantage of this.) #1861

• Virtualenv names will now appear in prompts for most Windows users. #2167

• Added support for cmder shell paths with spaces. #2168

• Added nested JSON output to the pipenv graph command. #2199

• Dropped vendored pip 9 and vendored, patched, and migrated to pip 10. Updated patched piptools version.
#2255

• PyPI mirror URLs can now be set to override instances of PyPI urls by passing the --pypi-mirror argument
from the command line or setting the PIPENV_PYPI_MIRROR environment variable. #2281

• Virtualenv activation lines will now avoid being written to some shell history files. #2287

• Pipenv will now only search for requirements.txt files when creating new projects, and during that time
only if the user doesn’t specify packages to pass in. #2309

• Added support for mounted drives via UNC paths. #2331

• Added support for Windows Subsystem for Linux bash shell detection. #2363

• Pipenv will now generate hashes much more quickly by resolving them in a single pass during locking. #2384

• pipenv run will now avoid spawning additional COMSPEC instances to run commands in when possible.
#2385

• Massive internal improvements to requirements parsing codebase, resolver, and error messaging. #2388

• pipenv check now may take multiple of the additional argument --ignore which takes a parameter
cve_id for the purpose of ignoring specific CVEs. #2408

Behavior Changes

• Pipenv will now parse & capitalize platform_python_implementation markers .. warning:: This
could cause an issue if you have an out of date Pipfile which lowercases the comparison value (e.g.
cpython instead of CPython). #2123

• Pipenv will now only search for requirements.txt files when creating new projects, and during that time
only if the user doesn’t specify packages to pass in. #2309

1.2. Release and Version History 17

https://github.com/pypa/pipenv/issues/2484
https://github.com/pypa/pipenv/issues/2404
https://github.com/pypa/pipenv/issues/1861
https://github.com/pypa/pipenv/issues/2167
https://github.com/pypa/pipenv/issues/2168
https://github.com/pypa/pipenv/issues/2199
https://github.com/pypa/pipenv/issues/2255
https://github.com/pypa/pipenv/issues/2281
https://github.com/pypa/pipenv/issues/2287
https://github.com/pypa/pipenv/issues/2309
https://github.com/pypa/pipenv/issues/2331
https://github.com/pypa/pipenv/issues/2363
https://github.com/pypa/pipenv/issues/2384
https://github.com/pypa/pipenv/issues/2385
https://github.com/pypa/pipenv/issues/2388
https://github.com/pypa/pipenv/issues/2408
https://github.com/pypa/pipenv/issues/2123
https://github.com/pypa/pipenv/issues/2309

pipenv Documentation, 2018.11.15.dev0

Bug Fixes

• Massive internal improvements to requirements parsing codebase, resolver, and error messaging. #1962, #2186,
#2263, #2312

• Pipenv will now parse & capitalize platform_python_implementation markers. #2123

• Fixed a bug with parsing and grouping old-style setup.py extras during resolution #2142

• Fixed a bug causing pipenv graph to throw unhelpful exceptions when running against empty or non-existent
environments. #2161

• Fixed a bug which caused --system to incorrectly abort when users were in a virtualenv. #2181

• Removed vendored cacert.pem which could cause issues for some users with custom certificate settings.
#2193

• Fixed a regression which led to direct invocations of virtualenv, rather than calling it by module. #2198

• Locking will now pin the correct VCS ref during pipenv update runs. Running pipenv update with a
new vcs ref specified in the Pipfile will now properly obtain, resolve, and install the specified dependency at
the specified ref. #2209

• pipenv clean will now correctly ignore comments from pip freeze when cleaning the environment.
#2262

• Resolution bugs causing packages for incompatible python versions to be locked have been fixed. #2267

• Fixed a bug causing pipenv graph to fail to display sometimes. #2268

• Updated requirementslib to fix a bug in pipfile parsing affecting relative path conversions. #2269

• Windows executable discovery now leverages os.pathext. #2298

• Fixed a bug which caused --deploy --system to inadvertently create a virtualenv before failing. #2301

• Fixed an issue which led to a failure to unquote special characters in file and wheel paths. #2302

• VCS dependencies are now manually obtained only if they do not match the requested ref. #2304

• Added error handling functionality to properly cope with single-digit Requires-Python metatdata with no
specifiers. #2377

• pipenv update will now always run the resolver and lock before ensuring your dependencies are in sync
with your lockfile. #2379

• Resolved a bug in our patched resolvers which could cause nondeterministic resolution failures in certain con-
ditions. Running pipenv install with no arguments in a project with only a Pipfile will now correctly
lock first for dependency resolution before installing. #2384

• Patched python-dotenv to ensure that environment variables always get encoded to the filesystem encoding.
#2386

Improved Documentation

• Update documentation wording to clarify Pipenv’s overall role in the packaging ecosystem. #2194

• Added contribution documentation and guidelines. #2205

• Added instructions for supervisord compatibility. #2215

• Fixed broken links to development philosophy and contribution documentation. #2248

18 Chapter 1. Install Pipenv Today!

https://github.com/pypa/pipenv/issues/1962
https://github.com/pypa/pipenv/issues/2186
https://github.com/pypa/pipenv/issues/2263
https://github.com/pypa/pipenv/issues/2312
https://github.com/pypa/pipenv/issues/2123
https://github.com/pypa/pipenv/issues/2142
https://github.com/pypa/pipenv/issues/2161
https://github.com/pypa/pipenv/issues/2181
https://github.com/pypa/pipenv/issues/2193
https://github.com/pypa/pipenv/issues/2198
https://github.com/pypa/pipenv/issues/2209
https://github.com/pypa/pipenv/issues/2262
https://github.com/pypa/pipenv/issues/2267
https://github.com/pypa/pipenv/issues/2268
https://github.com/pypa/pipenv/issues/2269
https://github.com/pypa/pipenv/issues/2298
https://github.com/pypa/pipenv/issues/2301
https://github.com/pypa/pipenv/issues/2302
https://github.com/pypa/pipenv/issues/2304
https://github.com/pypa/pipenv/issues/2377
https://github.com/pypa/pipenv/issues/2379
https://github.com/pypa/pipenv/issues/2384
https://github.com/pypa/pipenv/issues/2386
https://github.com/pypa/pipenv/issues/2194
https://github.com/pypa/pipenv/issues/2205
https://github.com/pypa/pipenv/issues/2215
https://github.com/pypa/pipenv/issues/2248

pipenv Documentation, 2018.11.15.dev0

Vendored Libraries

• Removed vendored cacert.pem which could cause issues for some users with custom certificate settings.
#2193

• Dropped vendored pip 9 and vendored, patched, and migrated to pip 10. Updated patched piptools version.
#2255

• Updated requirementslib to fix a bug in pipfile parsing affecting relative path conversions. #2269

• Added custom shell detection library shellingham, a port of our changes to pew. #2363

• Patched python-dotenv to ensure that environment variables always get encoded to the filesystem encoding.
#2386

• Updated vendored libraries. The following vendored libraries were updated:

– distlib from version 0.2.6 to 0.2.7.

– jinja2 from version 2.9.5 to 2.10.

– pathlib2 from version 2.1.0 to 2.3.2.

– parse from version 2.8.0 to 2.8.4.

– pexpect from version 2.5.2 to 2.6.0.

– requests from version 2.18.4 to 2.19.1.

– idna from version 2.6 to 2.7.

– certifi from version 2018.1.16 to 2018.4.16.

– packaging from version 16.8 to 17.1.

– six from version 1.10.0 to 1.11.0.

– requirementslib from version 0.2.0 to 1.0.1.

In addition, scandir was vendored and patched to avoid importing host system binaries when falling back to
pathlib2. #2368

1.2. Release and Version History 19

https://github.com/pypa/pipenv/issues/2193
https://github.com/pypa/pipenv/issues/2255
https://github.com/pypa/pipenv/issues/2269
https://github.com/pypa/pipenv/issues/2363
https://github.com/pypa/pipenv/issues/2386
https://github.com/pypa/pipenv/issues/2368

pipenv Documentation, 2018.11.15.dev0

20 Chapter 1. Install Pipenv Today!

CHAPTER 2

User Testimonials

Jannis Leidel, former pip maintainer— Pipenv is the porcelain I always wanted to build for pip. It fits my brain
and mostly replaces virtualenvwrapper and manual pip calls for me. Use it.

David Gang— This package manager is really awesome. For the first time I know exactly what my dependencies are
which I installed and what the transitive dependencies are. Combined with the fact that installs are deterministic,
makes this package manager first class, like cargo.

Justin Myles Holmes— Pipenv is finally an abstraction meant to engage the mind instead of merely the filesystem.

21

pipenv Documentation, 2018.11.15.dev0

22 Chapter 2. User Testimonials

CHAPTER 3

Pipenv Features

• Enables truly deterministic builds, while easily specifying only what you want.

• Generates and checks file hashes for locked dependencies.

• Automatically install required Pythons, if pyenv is available.

• Automatically finds your project home, recursively, by looking for a Pipfile.

• Automatically generates a Pipfile, if one doesn’t exist.

• Automatically creates a virtualenv in a standard location.

• Automatically adds/removes packages to a Pipfile when they are un/installed.

• Automatically loads .env files, if they exist.

The main commands are install, uninstall, and lock, which generates a Pipfile.lock. These are in-
tended to replace $ pip install usage, as well as manual virtualenv management (to activate a virtualenv, run $
pipenv shell).

3.1 Basic Concepts

• A virtualenv will automatically be created, when one doesn’t exist.

• When no parameters are passed to install, all packages [packages] specified will be installed.

• To initialize a Python 3 virtual environment, run $ pipenv --three.

• To initialize a Python 2 virtual environment, run $ pipenv --two.

• Otherwise, whatever virtualenv defaults to will be the default.

3.2 Other Commands

• graph will show you a dependency graph of your installed dependencies.

23

pipenv Documentation, 2018.11.15.dev0

• shell will spawn a shell with the virtualenv activated. This shell can be deactivated by using exit.

• run will run a given command from the virtualenv, with any arguments forwarded (e.g. $ pipenv run
python or $ pipenv run pip freeze).

• check checks for security vulnerabilities and asserts that PEP 508 requirements are being met by the current
environment.

24 Chapter 3. Pipenv Features

CHAPTER 4

Further Documentation Guides

4.1 Basic Usage of Pipenv

This document covers some of Pipenv’s more basic features.

25

pipenv Documentation, 2018.11.15.dev0

4.1.1 Example Pipfile & Pipfile.lock

Here is a simple example of a Pipfile and the resulting Pipfile.lock.

Example Pipfile

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
requests = "*"

[dev-packages]
pytest = "*"

Example Pipfile.lock

{
"_meta": {

"hash": {
"sha256":

→˓"8d14434df45e0ef884d6c3f6e8048ba72335637a8631cc44792f52fd20b6f97a"
},
"host-environment-markers": {

"implementation_name": "cpython",
"implementation_version": "3.6.1",
"os_name": "posix",
"platform_machine": "x86_64",
"platform_python_implementation": "CPython",
"platform_release": "16.7.0",
"platform_system": "Darwin",
"platform_version": "Darwin Kernel Version 16.7.0: Thu Jun 15 17:36:27

→˓PDT 2017; root:xnu-3789.70.16~2/RELEASE_X86_64",
"python_full_version": "3.6.1",
"python_version": "3.6",
"sys_platform": "darwin"

},
"pipfile-spec": 5,
"requires": {},
"sources": [

{
"name": "pypi",
"url": "https://pypi.python.org/simple",
"verify_ssl": true

}
]

},
"default": {

"certifi": {
"hashes": [

→˓"sha256:54a07c09c586b0e4c619f02a5e94e36619da8e2b053e20f594348c0611803704",

26 Chapter 4. Further Documentation Guides

pipenv Documentation, 2018.11.15.dev0

→˓"sha256:40523d2efb60523e113b44602298f0960e900388cf3bb6043f645cf57ea9e3f5"
],
"version": "==2017.7.27.1"

},
"chardet": {

"hashes": [

→˓"sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691",

→˓"sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae"
],
"version": "==3.0.4"

},
"idna": {

"hashes": [

→˓"sha256:8c7309c718f94b3a625cb648ace320157ad16ff131ae0af362c9f21b80ef6ec4",

→˓"sha256:2c6a5de3089009e3da7c5dde64a141dbc8551d5b7f6cf4ed7c2568d0cc520a8f"
],
"version": "==2.6"

},
"requests": {

"hashes": [

→˓"sha256:6a1b267aa90cac58ac3a765d067950e7dbbf75b1da07e895d1f594193a40a38b",

→˓"sha256:9c443e7324ba5b85070c4a818ade28bfabedf16ea10206da1132edaa6dda237e"
],
"version": "==2.18.4"

},
"urllib3": {

"hashes": [

→˓"sha256:06330f386d6e4b195fbfc736b297f58c5a892e4440e54d294d7004e3a9bbea1b",

→˓"sha256:cc44da8e1145637334317feebd728bd869a35285b93cbb4cca2577da7e62db4f"
],
"version": "==1.22"

}
},
"develop": {

"py": {
"hashes": [

→˓"sha256:2ccb79b01769d99115aa600d7eed99f524bf752bba8f041dc1c184853514655a",

→˓"sha256:0f2d585d22050e90c7d293b6451c83db097df77871974d90efd5a30dc12fcde3"
],
"version": "==1.4.34"

},
"pytest": {

"hashes": [

→˓"sha256:b84f554f8ddc23add65c411bf112b2d88e2489fd45f753b1cae5936358bdf314",

→˓"sha256:f46e49e0340a532764991c498244a60e3a37d7424a532b3ff1a6a7653f1a403a"

4.1. Basic Usage of Pipenv 27

pipenv Documentation, 2018.11.15.dev0

],
"version": "==3.2.2"

}
}

}

4.1.2 General Recommendations & Version Control

• Generally, keep both Pipfile and Pipfile.lock in version control.

• Do not keep Pipfile.lock in version control if multiple versions of Python are being targeted.

• Specify your target Python version in your Pipfile’s [requires] section. Ideally, you should only have one
target Python version, as this is a deployment tool.

• pipenv install is fully compatible with pip install syntax, for which the full documentation can be
found here.

4.1.3 Example Pipenv Workflow

Clone / create project repository:

$ cd myproject

Install from Pipfile, if there is one:

$ pipenv install

Or, add a package to your new project:

$ pipenv install <package>

This will create a Pipfile if one doesn’t exist. If one does exist, it will automatically be edited with the new package
you provided.

Next, activate the Pipenv shell:

$ pipenv shell
$ python --version

This will spawn a new shell subprocess, which can be deactivated by using exit.

4.1.4 Example Pipenv Upgrade Workflow

• Find out what’s changed upstream: $ pipenv update --outdated.

• Upgrade packages, two options:

1. Want to upgrade everything? Just do $ pipenv update.

2. Want to upgrade packages one-at-a-time? $ pipenv update <pkg> for each outdated package.

28 Chapter 4. Further Documentation Guides

https://pip.pypa.io/en/stable/user_guide/#installing-packages

pipenv Documentation, 2018.11.15.dev0

4.1.5 Importing from requirements.txt

If you only have a requirements.txt file available when running pipenv install, pipenv will automatically
import the contents of this file and create a Pipfile for you.

You can also specify $ pipenv install -r path/to/requirements.txt to import a requirements file.

If your requirements file has version numbers pinned, you’ll likely want to edit the new Pipfile to remove those,
and let pipenv keep track of pinning. If you want to keep the pinned versions in your Pipfile.lock for now, run
pipenv lock --keep-outdated. Make sure to upgrade soon!

4.1.6 Specifying Versions of a Package

You can specify versions of a package using the Semantic Versioning scheme (i.e. major.minor.micro).

For example, to install requests you can use:

$ pipenv install requests~=1.2 # equivalent to requests~=1.2.0

Pipenv will install version 1.2 and any minor update, but not 2.0.

This will update your Pipfile to reflect this requirement, automatically.

In general, Pipenv uses the same specifier format as pip. However, note that according to PEP 440 , you can’t use
versions containing a hyphen or a plus sign.

To make inclusive or exclusive version comparisons you can use:

$ pipenv install "requests>=1.4" # will install a version equal or larger than 1.4.0
$ pipenv install "requests<=2.13" # will install a version equal or lower than 2.13.0
$ pipenv install "requests>2.19" # will install 2.19.1 but not 2.19.0

: The use of " " around the package and version specification is highly recommended to avoid issues with Input and
output redirection in Unix-based operating systems.

The use of ~= is preferred over the == identifier as the former prevents pipenv from updating the packages:

$ pipenv install "requests~=2.2" # locks the major version of the package (this is
→˓equivalent to using ==2.*)

To avoid installing a specific version you can use the != identifier.

For an in depth explanation of the valid identifiers and more complex use cases check the relevant section of PEP-440.

4.1.7 Specifying Versions of Python

To create a new virtualenv, using a specific version of Python you have installed (and on your PATH), use the
--python VERSION flag, like so:

Use Python 3:

$ pipenv --python 3

Use Python3.6:

4.1. Basic Usage of Pipenv 29

https://semver.org/
\T1\textless {}https://www.python.org/dev/peps/pep-0440/\T1\textgreater {}
https://robots.thoughtbot.com/input-output-redirection-in-the-shell
https://robots.thoughtbot.com/input-output-redirection-in-the-shell
https://www.python.org/dev/peps/pep-0440/#version-specifiers\T1\textgreater {}

pipenv Documentation, 2018.11.15.dev0

$ pipenv --python 3.6

Use Python 2.7.14:

$ pipenv --python 2.7.14

When given a Python version, like this, Pipenv will automatically scan your system for a Python that matches that
given version.

If a Pipfile hasn’t been created yet, one will be created for you, that looks like this:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[dev-packages]

[packages]

[requires]
python_version = "3.6"

: The inclusion of [requires] python_version = "3.6" specifies that your application requires this ver-
sion of Python, and will be used automatically when running pipenv install against this Pipfile in the future
(e.g. on other machines). If this is not true, feel free to simply remove this section.

If you don’t specify a Python version on the command–line, either the [requires] python_full_version or
python_version will be selected automatically, falling back to whatever your system’s default python installa-
tion is, at time of execution.

4.1.8 Editable Dependencies (e.g. -e .)

You can tell Pipenv to install a path as editable — often this is useful for the current working directory when working
on packages:

$ pipenv install --dev -e .

$ cat Pipfile
...
[dev-packages]
"e1839a8" = {path = ".", editable = true}
...

: All sub-dependencies will get added to the Pipfile.lock as well. Sub-dependencies are not added to the
Pipfile.lock if you leave the -e option out.

4.1.9 Environment Management with Pipenv

The three primary commands you’ll use in managing your pipenv environment are $ pipenv install, $
pipenv uninstall, and $ pipenv lock.

30 Chapter 4. Further Documentation Guides

pipenv Documentation, 2018.11.15.dev0

$ pipenv install

$ pipenv install is used for installing packages into the pipenv virtual environment and updating your Pipfile.

Along with the basic install command, which takes the form:

$ pipenv install [package names]

The user can provide these additional parameters:

• --two — Performs the installation in a virtualenv using the system python2 link.

• --three — Performs the installation in a virtualenv using the system python3 link.

• --python — Performs the installation in a virtualenv using the provided Python interpreter.

: None of the above commands should be used together. They are also destructive and will delete
your current virtualenv before replacing it with an appropriately versioned one.

: The virtualenv created by Pipenv may be different from what you were expecting. Dangerous char-
acters (i.e. $`!*@" as well as space, line feed, carriage return, and tab) are converted to underscores.
Additionally, the full path to the current folder is encoded into a “slug value” and appended to ensure the
virtualenv name is unique.

• --dev — Install both develop and default packages from Pipfile.

• --system — Use the system pip command rather than the one from your virtualenv.

• --ignore-pipfile — Ignore the Pipfile and install from the Pipfile.lock.

• --skip-lock — Ignore the Pipfile.lock and install from the Pipfile. In addition, do not
write out a Pipfile.lock reflecting changes to the Pipfile.

$ pipenv uninstall

$ pipenv uninstall supports all of the parameters in pipenv install, as well as two additional options, --all
and --all-dev.

• --all — This parameter will purge all files from the virtual environment, but leave the Pipfile untouched.

• --all-dev — This parameter will remove all of the development packages from the virtual environment, and
remove them from the Pipfile.

$ pipenv lock

$ pipenv lock is used to create a Pipfile.lock, which declares all dependencies (and sub-dependencies) of
your project, their latest available versions, and the current hashes for the downloaded files. This ensures repeatable,
and most importantly deterministic, builds.

4.1.10 About Shell Configuration

Shells are typically misconfigured for subshell use, so $ pipenv shell --fancy may produce unexpected re-
sults. If this is the case, try $ pipenv shell, which uses “compatibility mode”, and will attempt to spawn a
subshell despite misconfiguration.

4.1. Basic Usage of Pipenv 31

pipenv Documentation, 2018.11.15.dev0

A proper shell configuration only sets environment variables like PATH during a login session, not during every
subshell spawn (as they are typically configured to do). In fish, this looks like this:

if status --is-login
set -gx PATH /usr/local/bin $PATH

end

You should do this for your shell too, in your ~/.profile or ~/.bashrc or wherever appropriate.

: The shell launched in interactive mode. This means that if your shell reads its configuration from a specific file for
interactive mode (e.g. bash by default looks for a ~/.bashrc configuration file for interactive mode), then you’ll
need to modify (or create) this file.

If you experience issues with $ pipenv shell, just check the PIPENV_SHELL environment variable, which $
pipenv shell will use if available. For detail, see configuration-with-environment-variables.

4.1.11 A Note about VCS Dependencies

You can install packages with pipenv from git and other version control systems using URLs formatted according to
the following rule:

<vcs_type>+<scheme>://<location>/<user_or_organization>/<repository>@<branch_or_tag>
→˓#egg=<package_name>

The only optional section is the @<branch_or_tag> section. When using git over SSH, you
may use the shorthand vcs and scheme alias git+git@<location>:<user_or_organization>/
<repository>@<branch_or_tag>#<package_name>. Note that this is translated to git+ssh://
git@<location> when parsed.

Note that it is strongly recommended that you install any version-controlled dependencies in editable mode, using
pipenv install -e, in order to ensure that dependency resolution can be performed with an up to date copy of
the repository each time it is performed, and that it includes all known dependencies.

Below is an example usage which installs the git repository located at https://github.com/requests/
requests.git from tag v2.20.1 as package name requests:

$ pipenv install -e git+https://github.com/requests/requests.git@v2.20.1#egg=requests
Creating a Pipfile for this project...
Installing -e git+https://github.com/requests/requests.git@v2.20.1#egg=requests...
[...snipped...]
Adding -e git+https://github.com/requests/requests.git@v2.20.1#egg=requests to Pipfile
→˓'s [packages]...
[...]

$ cat Pipfile
[packages]
requests = {git = "https://github.com/requests/requests.git", editable = true, ref =
→˓"v2.20.1"}

Valid values for <vcs_type> include git, bzr, svn, and hg. Valid values for <scheme> include http, https,
ssh, and file. In specific cases you also have access to other schemes: svn may be combined with svn as a
scheme, and bzr can be combined with sftp and lp.

You can read more about pip’s implementation of VCS support here. For more information about other options
available when specifying VCS dependencies, please check the Pipfile spec.

32 Chapter 4. Further Documentation Guides

https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support
https://github.com/pypa/pipfile

pipenv Documentation, 2018.11.15.dev0

4.1.12 Pipfile.lock Security Features

Pipfile.lock takes advantage of some great new security improvements in pip. By default, the Pipfile.
lock will be generated with the sha256 hashes of each downloaded package. This will allow pip to guarantee you’re
installing what you intend to when on a compromised network, or downloading dependencies from an untrusted PyPI
endpoint.

We highly recommend approaching deployments with promoting projects from a development environment into pro-
duction. You can use pipenv lock to compile your dependencies on your development environment and deploy
the compiled Pipfile.lock to all of your production environments for reproducible builds.

4.2 Advanced Usage of Pipenv

This document covers some of Pipenv’s more glorious and advanced features.

4.2.1 Caveats

• Dependencies of wheels provided in a Pipfile will not be captured by $ pipenv lock.

• There are some known issues with using private indexes, related to hashing. We’re actively working to solve
this problem. You may have great luck with this, however.

• Installation is intended to be as deterministic as possible — use the --sequential flag to increase this, if
experiencing issues.

4.2. Advanced Usage of Pipenv 33

pipenv Documentation, 2018.11.15.dev0

4.2.2 Specifying Package Indexes

If you’d like a specific package to be installed with a specific package index, you can do the following:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[[source]]
url = "http://pypi.home.kennethreitz.org/simple"
verify_ssl = false
name = "home"

[dev-packages]

[packages]
requests = {version="*", index="home"}
maya = {version="*", index="pypi"}
records = "*"

Very fancy.

4.2.3 Using a PyPI Mirror

If you’d like to override the default PyPI index urls with the url for a PyPI mirror, you can use the following:

$ pipenv install --pypi-mirror <mirror_url>

$ pipenv update --pypi-mirror <mirror_url>

$ pipenv sync --pypi-mirror <mirror_url>

$ pipenv lock --pypi-mirror <mirror_url>

$ pipenv uninstall --pypi-mirror <mirror_url>

Alternatively, you can set the PIPENV_PYPI_MIRROR environment variable.

4.2.4 Injecting credentials into Pipfiles via environment variables

Pipenv will expand environment variables (if defined) in your Pipfile. Quite useful if you need to authenticate to a
private PyPI:

[[source]]
url = "https://$USERNAME:${PASSWORD}@mypypi.example.com/simple"
verify_ssl = true
name = "pypi"

Luckily - pipenv will hash your Pipfile before expanding environment variables (and, helpfully, will substitute the
environment variables again when you install from the lock file - so no need to commit any secrets! Woo!)

34 Chapter 4. Further Documentation Guides

pipenv Documentation, 2018.11.15.dev0

4.2.5 Specifying Basically Anything

If you’d like to specify that a specific package only be installed on certain systems, you can use PEP 508 specifiers to
accomplish this.

Here’s an example Pipfile, which will only install pywinusb on Windows systems:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
requests = "*"
pywinusb = {version = "*", sys_platform = "== 'win32'"}

Voilà!

Here’s a more complex example:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[packages]
unittest2 = {version = ">=1.0,<3.0", markers="python_version < '2.7.9' or (python_
→˓version >= '3.0' and python_version < '3.4')"}

Magic. Pure, unadulterated magic.

4.2.6 Using pipenv for Deployments

You may want to use pipenv as part of a deployment process.

You can enforce that your Pipfile.lock is up to date using the --deploy flag:

$ pipenv install --deploy

This will fail a build if the Pipfile.lock is out–of–date, instead of generating a new one.

Or you can install packages exactly as specified in Pipfile.lock using the sync command:

$ pipenv sync

: pipenv install --ignore-pipfile is nearly equivalent to pipenv sync, but pipenv sync will
never attempt to re-lock your dependencies as it is considered an atomic operation. pipenv install by default
does attempt to re-lock unless using the --deploy flag.

Deploying System Dependencies

You can tell Pipenv to install a Pipfile’s contents into its parent system with the --system flag:

$ pipenv install --system

This is useful for managing the system Python, and deployment infrastructure (e.g. Heroku does this).

4.2. Advanced Usage of Pipenv 35

https://www.python.org/dev/peps/pep-0508/

pipenv Documentation, 2018.11.15.dev0

4.2.7 Pipenv and Other Python Distributions

To use Pipenv with a third-party Python distribution (e.g. Anaconda), you simply provide the path to the Python
binary:

$ pipenv install --python=/path/to/python

Anaconda uses Conda to manage packages. To reuse Conda–installed Python packages, use the --site-packages
flag:

$ pipenv --python=/path/to/python --site-packages

4.2.8 Generating a requirements.txt

You can convert a Pipfile and Pipfile.lock into a requirements.txt file very easily, and get all the
benefits of extras and other goodies we have included.

Let’s take this Pipfile:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[packages]
requests = {version="*"}

And generate a requirements.txt out of it:

$ pipenv lock -r
chardet==3.0.4
requests==2.18.4
certifi==2017.7.27.1
idna==2.6
urllib3==1.22

If you wish to generate a requirements.txt with only the development requirements you can do that too! Let’s
take the following Pipfile:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[dev-packages]
pytest = {version="*"}

And generate a requirements.txt out of it:

$ pipenv lock -r --dev
py==1.4.34
pytest==3.2.3

Very fancy.

4.2.9 Detection of Security Vulnerabilities

Pipenv includes the safety package, and will use it to scan your dependency graph for known security vulnerabilities!

36 Chapter 4. Further Documentation Guides

https://github.com/pyupio/safety

pipenv Documentation, 2018.11.15.dev0

Example:

$ cat Pipfile
[packages]
django = "==1.10.1"

$ pipenv check
Checking PEP 508 requirements...
Passed!
Checking installed package safety...

33075: django >=1.10,<1.10.3 resolved (1.10.1 installed)!
Django before 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3,
→˓when settings.DEBUG is True, allow remote attackers to conduct DNS rebinding
→˓attacks by leveraging failure to validate the HTTP Host header against settings.
→˓ALLOWED_HOSTS.

33076: django >=1.10,<1.10.3 resolved (1.10.1 installed)!
Django 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3 use a
→˓hardcoded password for a temporary database user created when running tests with an
→˓Oracle database, which makes it easier for remote attackers to obtain access to the
→˓database server by leveraging failure to manually specify a password in the
→˓database settings TEST dictionary.

33300: django >=1.10,<1.10.7 resolved (1.10.1 installed)!
CVE-2017-7233: Open redirect and possible XSS attack via user-supplied numeric
→˓redirect URLs
==

Django relies on user input in some cases (e.g.
:func:`django.contrib.auth.views.login` and :doc:`i18n </topics/i18n/index>`)
to redirect the user to an "on success" URL. The security check for these
redirects (namely ``django.utils.http.is_safe_url()``) considered some numeric
URLs (e.g. ``http:999999999``) "safe" when they shouldn't be.

Also, if a developer relies on ``is_safe_url()`` to provide safe redirect
targets and puts such a URL into a link, they could suffer from an XSS attack.

CVE-2017-7234: Open redirect vulnerability in ``django.views.static.serve()``
===

A maliciously crafted URL to a Django site using the
:func:`~django.views.static.serve` view could redirect to any other domain. The
view no longer does any redirects as they don't provide any known, useful
functionality.

Note, however, that this view has always carried a warning that it is not
hardened for production use and should be used only as a development aid.

: In order to enable this functionality while maintaining its permissive copyright license, pipenv embeds an API client
key for the backend Safety API operated by pyup.io rather than including a full copy of the CC-BY-NC-SA licensed
Safety-DB database. This embedded client key is shared across all pipenv check users, and hence will be subject to
API access throttling based on overall usage rather than individual client usage.

You can also use your own safety API key by setting the environment variable PIPENV_PYUP_API_KEY.

4.2. Advanced Usage of Pipenv 37

pipenv Documentation, 2018.11.15.dev0

4.2.10 Community Integrations

There are a range of community-maintained plugins and extensions available for a range of editors and IDEs, as well
as different products which integrate with Pipenv projects:

• Heroku (Cloud Hosting)

• Platform.sh (Cloud Hosting)

• PyUp (Security Notification)

• Emacs (Editor Integration)

• Fish Shell (Automatic $ pipenv shell!)

• VS Code (Editor Integration)

• PyCharm (Editor Integration)

Works in progress:

• Sublime Text (Editor Integration)

• Mysterious upcoming Google Cloud product (Cloud Hosting)

4.2.11 Open a Module in Your Editor

Pipenv allows you to open any Python module that is installed (including ones in your codebase), with the $ pipenv
open command:

$ pipenv install -e git+https://github.com/kennethreitz/background.git#egg=background
Installing -e git+https://github.com/kennethreitz/background.git#egg=background...
...
Updated Pipfile.lock!

$ pipenv open background
Opening '/Users/kennethreitz/.local/share/virtualenvs/hmm-mGOawwm_/src/background/
→˓background.py' in your EDITOR.

This allows you to easily read the code you’re consuming, instead of looking it up on GitHub.

: The standard EDITOR environment variable is used for this. If you’re using VS Code, for example, you’ll want to
export EDITOR=code (if you’re on macOS you will want to install the command on to your PATH first).

4.2.12 Automatic Python Installation

If you have pyenv installed and configured, Pipenv will automatically ask you if you want to install a required version
of Python if you don’t already have it available.

This is a very fancy feature, and we’re very proud of it:

$ cat Pipfile
[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[dev-packages]

38 Chapter 4. Further Documentation Guides

https://heroku.com/python
https://platform.sh/hosting/python
https://pyup.io
https://github.com/pwalsh/pipenv.el
https://github.com/fisherman/pipenv
https://code.visualstudio.com/docs/python/environments
https://www.jetbrains.com/pycharm/download/
https://github.com/kennethreitz/pipenv-sublime
https://code.visualstudio.com/docs/setup/mac#_launching-from-the-command-line
https://github.com/pyenv/pyenv#simple-python-version-management-pyenv

pipenv Documentation, 2018.11.15.dev0

[packages]
requests = "*"

[requires]
python_version = "3.6"

$ pipenv install
Warning: Python 3.6 was not found on your system...
Would you like us to install latest CPython 3.6 with pyenv? [Y/n]: y
Installing CPython 3.6.2 with pyenv (this may take a few minutes)...
...
Making Python installation global...
Creating a virtualenv for this project...
Using /Users/kennethreitz/.pyenv/shims/python3 to create virtualenv...
...
No package provided, installing all dependencies.
...
Installing dependencies from Pipfile.lock...

5/5 -- 00:00:03
To activate this project's virtualenv, run the following:
$ pipenv shell

Pipenv automatically honors both the python_full_version and python_version PEP 508 specifiers.

4.2.13 Automatic Loading of .env

If a .env file is present in your project, $ pipenv shell and $ pipenv run will automatically load it, for
you:

$ cat .env
HELLO=WORLD

$ pipenv run python
Loading .env environment variables...
Python 2.7.13 (default, Jul 18 2017, 09:17:00)
[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.environ['HELLO']
'WORLD'

This is very useful for keeping production credentials out of your codebase. We do not recommend committing .env
files into source control!

If your .env file is located in a different path or has a different name you may set the PIPENV_DOTENV_LOCATION
environment variable:

$ PIPENV_DOTENV_LOCATION=/path/to/.env pipenv shell

To prevent pipenv from loading the .env file, set the PIPENV_DONT_LOAD_ENV environment variable:

$ PIPENV_DONT_LOAD_ENV=1 pipenv shell

4.2. Advanced Usage of Pipenv 39

https://www.python.org/dev/peps/pep-0508/

pipenv Documentation, 2018.11.15.dev0

4.2.14 Custom Script Shortcuts

Pipenv supports creating custom shortcuts in the (optional) [scripts] section of your Pipfile.

You can then run pipenv run <shortcut name> in your terminal to run the command in the context of your
pipenv virtual environment even if you have not activated the pipenv shell first.

For example, in your Pipfile:

[scripts]
printspam = "python -c \"print('I am a silly example, no one would need to do this')\"
→˓"

And then in your terminal:

$ pipenv run printspam
I am a silly example, no one would need to do this

Commands that expect arguments will also work. For example:

[scripts]
echospam = "echo I am really a very silly example"

$ pipenv run echospam "indeed"
I am really a very silly example indeed

4.2.15 Support for Environment Variables

Pipenv supports the usage of environment variables in values. For example:

[[source]]
url = "https://${PYPI_USERNAME}:${PYPI_PASSWORD}@my_private_repo.example.com/simple"
verify_ssl = true
name = "pypi"

[dev-packages]

[packages]
requests = {version="*", index="home"}
maya = {version="*", index="pypi"}
records = "*"

Environment variables may be specified as ${MY_ENVAR} or $MY_ENVAR. On Windows, %MY_ENVAR% is sup-
ported in addition to ${MY_ENVAR} or $MY_ENVAR.

4.2.16 Configuration With Environment Variables

Pipenv comes with a handful of options that can be enabled via shell environment variables. To activate them, simply
create the variable in your shell and pipenv will detect it.

If you’d like to set these environment variables on a per-project basis, I recommend utilizing the fantastic direnv
project, in order to do so.

Also note that pip itself supports environment variables, if you need additional customization.

For example:

40 Chapter 4. Further Documentation Guides

https://direnv.net
https://pip.pypa.io/en/stable/user_guide/#environment-variables

pipenv Documentation, 2018.11.15.dev0

$ PIP_INSTALL_OPTION="-- -DCMAKE_BUILD_TYPE=Release" pipenv install -e .

4.2.17 Custom Virtual Environment Location

Pipenv automatically honors the WORKON_HOME environment variable, if you have it set — so you can tell pipenv to
store your virtual environments wherever you want, e.g.:

export WORKON_HOME=~/.venvs

In addition, you can also have Pipenv stick the virtualenv in project/.venv by setting the
PIPENV_VENV_IN_PROJECT environment variable.

4.2.18 Testing Projects

Pipenv is being used in projects like Requests for declaring development dependencies and running the test suite.

We’ve currently tested deployments with both Travis-CI and tox with success.

Travis CI

An example Travis CI setup can be found in Requests. The project uses a Makefile to define common functions such
as its init and tests commands. Here is a stripped down example .travis.yml:

language: python
python:

- "2.6"
- "2.7"
- "3.3"
- "3.4"
- "3.5"
- "3.6"
- "3.7-dev"

command to install dependencies
install: "make"

command to run tests
script:

- make test

and the corresponding Makefile:

init:
pip install pipenv
pipenv install --dev

test:
pipenv run py.test tests

Tox Automation Project

Alternatively, you can configure a tox.ini like the one below for both local and external testing:

4.2. Advanced Usage of Pipenv 41

https://github.com/kennethreitz/requests
https://travis-ci.org/
https://tox.readthedocs.io/en/latest/
https://github.com/kennethreitz/requests

pipenv Documentation, 2018.11.15.dev0

[tox]
envlist = flake8-py3, py26, py27, py33, py34, py35, py36, pypy

[testenv]
deps = pipenv
commands=

pipenv install --dev
pipenv run py.test tests

[testenv:flake8-py3]
basepython = python3.4
commands=

pipenv install --dev
pipenv run flake8 --version
pipenv run flake8 setup.py docs project test

Pipenv will automatically use the virtualenv provided by tox. If pipenv install --dev installs e.g. pytest,
then installed command py.testwill be present in given virtualenv and can be called directly by py.test tests
instead of pipenv run py.test tests.

You might also want to add --ignore-pipfile to pipenv install, as to not accidentally modify the lock-
file on each test run. This causes Pipenv to ignore changes to the Pipfile and (more importantly) prevents it
from adding the current environment to Pipfile.lock. This might be important as the current environment (i.e.
the virtualenv provisioned by tox) will usually contain the current project (which may or may not be desired) and
additional dependencies from tox’s deps directive. The initial provisioning may alternatively be disabled by adding
skip_install = True to tox.ini.

This method requires you to be explicit about updating the lock-file, which is probably a good idea in any case.

A 3rd party plugin, tox-pipenv is also available to use Pipenv natively with tox.

4.2.19 Shell Completion

To enable completion in fish, add this to your config:

eval (pipenv --completion)

Alternatively, with bash or zsh, add this to your config:

eval "$(pipenv --completion)"

Magic shell completions are now enabled!

4.2.20 Working with Platform-Provided Python Components

It’s reasonably common for platform specific Python bindings for operating system interfaces to only be available
through the system package manager, and hence unavailable for installation into virtual environments with pip. In
these cases, the virtual environment can be created with access to the system site-packages directory:

$ pipenv --three --site-packages

To ensure that all pip-installable components actually are installed into the virtual environment and system pack-
ages are only used for interfaces that don’t participate in Python-level dependency resolution at all, use the
PIP_IGNORE_INSTALLED setting:

42 Chapter 4. Further Documentation Guides

https://tox-pipenv.readthedocs.io/en/latest/

pipenv Documentation, 2018.11.15.dev0

$ PIP_IGNORE_INSTALLED=1 pipenv install --dev

4.2.21 Pipfile vs setup.py

There is a subtle but very important distinction to be made between applications and libraries. This is a very common
source of confusion in the Python community.

Libraries provide reusable functionality to other libraries and applications (let’s use the umbrella term projects here).
They are required to work alongside other libraries, all with their own set of subdependencies. They define abstract
dependencies. To avoid version conflicts in subdependencies of different libraries within a project, libraries should
never ever pin dependency versions. Although they may specify lower or (less frequently) upper bounds, if they rely
on some specific feature/fix/bug. Library dependencies are specified via install_requires in setup.py.

Libraries are ultimately meant to be used in some application. Applications are different in that they usually are not
depended on by other projects. They are meant to be deployed into some specific environment and only then should
the exact versions of all their dependencies and subdependencies be made concrete. To make this process easier is
currently the main goal of Pipenv.

To summarize:

• For libraries, define abstract dependencies via install_requires in setup.py. The decision of which
version exactly to be installed and where to obtain that dependency is not yours to make!

• For applications, define dependencies and where to get them in the Pipfile and use this file to update the set of
concrete dependencies in Pipfile.lock. This file defines a specific idempotent environment that is known
to work for your project. The Pipfile.lock is your source of truth. The Pipfile is a convenience for
you to create that lock-file, in that it allows you to still remain somewhat vague about the exact version of a
dependency to be used. Pipenv is there to help you define a working conflict-free set of specific dependency-
versions, which would otherwise be a very tedious task.

• Of course, Pipfile and Pipenv are still useful for library developers, as they can be used to define a develop-
ment or test environment.

• And, of course, there are projects for which the distinction between library and application isn’t that clear. In
that case, use install_requires alongside Pipenv and Pipfile.

You can also do this:

$ pipenv install -e .

This will tell Pipenv to lock all your setup.py–declared dependencies.

4.2.22 Changing Pipenv’s Cache Location

You can force Pipenv to use a different cache location by setting the environment variable PIPENV_CACHE_DIR to
the location you wish. This is useful in the same situations that you would change PIP_CACHE_DIR to a different
directory.

4.2.23 Changing Default Python Versions

By default, Pipenv will initialize a project using whatever version of python the python3 is. Besides starting a project
with the --three or --two flags, you can also use PIPENV_DEFAULT_PYTHON_VERSION to specify what
version to use when starting a project when --three or --two aren’t used.

4.2. Advanced Usage of Pipenv 43

pipenv Documentation, 2018.11.15.dev0

4.3 Frequently Encountered Pipenv Problems

Pipenv is constantly being improved by volunteers, but is still a very young project with limited resources, and has
some quirks that needs to be dealt with. We need everyone’s help (including yours!).

Here are some common questions people have using Pipenv. Please take a look below and see if they resolve your
problem.

: Make sure you’re running the newest Pipenv version first!

4.3.1 Your dependencies could not be resolved

Make sure your dependencies actually do resolve. If you’re confident they are, you may need to clear your resolver
cache. Run the following command:

pipenv lock --clear

and try again.

If this does not work, try manually deleting the whole cache directory. It is usually one of the following locations:

• ~/Library/Caches/pipenv (macOS)

• %LOCALAPPDATA%\pipenv\pipenv\Cache (Windows)

• ~/.cache/pipenv (other operating systems)

Pipenv does not install prereleases (i.e. a version with an alpha/beta/etc. suffix, such as 1.0b1) by default. You will
need to pass the --pre flag in your command, or set

[pipenv]
allow_prereleases = true

in your Pipfile.

4.3.2 No module named <module name>

This is usually a result of mixing Pipenv with system packages. We strongly recommend installing Pipenv in an isolated
environment. Uninstall all existing Pipenv installations, and see Installing Pipenv to choose one of the recommended
way to install Pipenv instead.

4.3.3 My pyenv-installed Python is not found

Make sure you have PYENV_ROOT set correctly. Pipenv only supports CPython distributions, with version name like
3.6.4 or similar.

4.3.4 Pipenv does not respect pyenv’s global and local Python versions

Pipenv by default uses the Python it is installed against to create the virtualenv. You can set the --python option, or
$PYENV_ROOT/shims/python to let it consult pyenv when choosing the interpreter. See Specifying Versions of
a Package for more information.

44 Chapter 4. Further Documentation Guides

pipenv Documentation, 2018.11.15.dev0

If you want Pipenv to automatically “do the right thing”, you can set the environment variable PIPENV_PYTHON
to $PYENV_ROOT/shims/python. This will make Pipenv use pyenv’s active Python version to create virtual
environments by default.

4.3.5 ValueError: unknown locale: UTF-8

macOS has a bug in its locale detection that prevents us from detecting your shell encoding correctly. This can also be
an issue on other systems if the locale variables do not specify an encoding.

The workaround is to set the following two environment variables to a standard localization format:

• LC_ALL

• LANG

For Bash, for example, you can add the following to your ~/.bash_profile:

export LC_ALL='en_US.UTF-8'
export LANG='en_US.UTF-8'

For Zsh, the file to edit is ~/.zshrc.

: You can change both the en_US and UTF-8 part to the language/locale and encoding you use.

4.3.6 /bin/pip: No such file or directory

This may be related to your locale setting. See ValueError: unknown locale: UTF-8 for a possible solution.

4.3.7 shell does not show the virtualenv’s name in prompt

This is intentional. You can do it yourself with either shell plugins, or clever PS1 configuration. If you really want it
back, use

pipenv shell -c

instead (not available on Windows).

4.3.8 Pipenv does not respect dependencies in setup.py

No, it does not, intentionally. Pipfile and setup.py serve different purposes, and should not consider each other by
default. See Pipfile vs setup.py for more information.

4.3.9 Using pipenv run in Supervisor program

When you configure a supervisor program’s command with pipenv run ..., you need to set locale enviroment
variables properly to make it work.

Add this line under [supervisord] section in /etc/supervisor/supervisord.conf:

[supervisord]
environment=LC_ALL='en_US.UTF-8',LANG='en_US.UTF-8'

4.3. Frequently Encountered Pipenv Problems 45

pipenv Documentation, 2018.11.15.dev0

4.3.10 An exception is raised during Locking dependencies...

Run pipenv lock --clear and try again. The lock sequence caches results to speed up subsequent runs. The
cache may contain faulty results if a bug causes the format to corrupt, even after the bug is fixed. --clear flushes
the cache, and therefore removes the bad results.

46 Chapter 4. Further Documentation Guides

CHAPTER 5

Contribution Guides

5.1 Development Philosophy

Pipenv is an open but opinionated tool, created by an open but opinionated developer.

5.1.1 Management Style

Kenneth Reitz is the BDFL. He has final say in any decision related to the Pipenv project. Kenneth is responsible for
the direction and form of the library, as well as its presentation. In addition to making decisions based on technical
merit, he is responsible for making decisions based on the development philosophy of Pipenv.

Dan Ryan, Tzu-ping Chung, and Nate Prewitt are the core contributors. They are responsible for triaging bug reports,
reviewing pull requests and ensuring that Kenneth is kept up to speed with developments around the library. The day-
to-day managing of the project is done by the core contributors. They are responsible for making judgements about
whether or not a feature request is likely to be accepted by Kenneth.

5.1.2 Values

• Simplicity is always better than functionality.

• Listen to everyone, then disregard it.

• The API is all that matters. Everything else is secondary.

• Fit the 90% use-case. Ignore the nay-sayers.

5.2 Contributing to Pipenv

If you’re reading this, you’re probably interested in contributing to Pipenv. Thank you very much! Open source
projects live-and-die based on the support they receive from others, and the fact that you’re even considering con-
tributing to the Pipenv project is very generous of you.

47

http://kennethreitz.org
http://github.com/techalchemy
https://github.com/uranusjr
https://github.com/nateprewitt

pipenv Documentation, 2018.11.15.dev0

This document lays out guidelines and advice for contributing to this project. If you’re thinking of contributing, please
start by reading this document and getting a feel for how contributing to this project works. If you have any questions,
feel free to reach out to either Dan Ryan, Tzu-ping Chung, or Nate Prewitt, the primary maintainers.

The guide is split into sections based on the type of contribution you’re thinking of making, with a section that covers
general guidelines for all contributors.

5.2.1 Be Cordial

Be cordial or be on your way. —Kenneth Reitz

Pipenv has one very important rule governing all forms of contribution, including reporting bugs or requesting features.
This golden rule is “be cordial or be on your way”.

All contributions are welcome, as long as everyone involved is treated with respect.

5.2.2 Get Early Feedback

If you are contributing, do not feel the need to sit on your contribution until it is perfectly polished and complete. It
helps everyone involved for you to seek feedback as early as you possibly can. Submitting an early, unfinished version
of your contribution for feedback in no way prejudices your chances of getting that contribution accepted, and can
save you from putting a lot of work into a contribution that is not suitable for the project.

5.2.3 Contribution Suitability

Our project maintainers have the last word on whether or not a contribution is suitable for Pipenv. All contributions
will be considered carefully, but from time to time, contributions will be rejected because they do not suit the current
goals or needs of the project.

If your contribution is rejected, don’t despair! As long as you followed these guidelines, you will have a much better
chance of getting your next contribution accepted.

5.2.4 Code Contributions

Steps for Submitting Code

When contributing code, you’ll want to follow this checklist:

1. Fork the repository on GitHub.

2. Run the tests to confirm they all pass on your system. If they don’t, you’ll need to investigate why they fail. If
you’re unable to diagnose this yourself, raise it as a bug report by following the guidelines in this document:
Bug Reports.

3. Write tests that demonstrate your bug or feature. Ensure that they fail.

4. Make your change.

5. Run the entire test suite again, confirming that all tests pass including the ones you just added.

6. Send a GitHub Pull Request to the main repository’s master branch. GitHub Pull Requests are the expected
method of code collaboration on this project.

The following sub-sections go into more detail on some of the points above.

48 Chapter 5. Contribution Guides

https://github.com/techalchemy
https://github.com/uranusjr
https://github.com/nateprewitt
https://www.kennethreitz.org/essays/be-cordial-or-be-on-your-way

pipenv Documentation, 2018.11.15.dev0

Code Review

Contributions will not be merged until they’ve been code reviewed. You should implement any code review feedback
unless you strongly object to it. In the event that you object to the code review feedback, you should make your case
clearly and calmly. If, after doing so, the feedback is judged to still apply, you must either apply the feedback or
withdraw your contribution.

5.2.5 Documentation Contributions

Documentation improvements are always welcome! The documentation files live in the docs/ directory of the
codebase. They’re written in reStructuredText, and use Sphinx to generate the full suite of documentation.

When contributing documentation, please do your best to follow the style of the documentation files. This means a
soft-limit of 79 characters wide in your text files and a semi-formal, yet friendly and approachable, prose style.

When presenting Python code, use single-quoted strings ('hello' instead of "hello").

5.2.6 Bug Reports

Bug reports are hugely important! Before you raise one, though, please check through the GitHub issues, both open
and closed, to confirm that the bug hasn’t been reported before. Duplicate bug reports are a huge drain on the time of
other contributors, and should be avoided as much as possible.

5.2.7 Run the tests

Three ways of running the tests are as follows:

1. make test (which uses docker)

2. ./run-tests.sh or run-tests.bat

3. Using pipenv:

pipenv install --dev
pipenv run pytest

For the last two, it is important that your environment is setup correctly, and this may take some work, for example,
on a specific Mac installation, the following steps may be needed:

Make sure the tests can access github
if ["$SSH_AGENT_PID" = ""]
then

eval `ssh-agent`
ssh-add

fi

Use unix like utilities, installed with brew,
e.g. brew install coreutils
for d in /usr/local/opt/*/libexec/gnubin /usr/local/opt/python/libexec/bin
do

[[":$PATH:" != *":$d:"*]] && PATH="$d:${PATH}"
done

export PATH

5.2. Contributing to Pipenv 49

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/index.html
https://github.com/pypa/pipenv/issues

pipenv Documentation, 2018.11.15.dev0

PIP_FIND_LINKS currently breaks test_uninstall.py
unset PIP_FIND_LINKS

50 Chapter 5. Contribution Guides

CHAPTER 6

Pipenv Usage

51

pipenv Documentation, 2018.11.15.dev0

52 Chapter 6. Pipenv Usage

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

53

	Install Pipenv Today!
	Pipenv & Virtual Environments
	Release and Version History

	User Testimonials
	☤ Pipenv Features
	Basic Concepts
	Other Commands

	Further Documentation Guides
	Basic Usage of Pipenv
	Advanced Usage of Pipenv
	Frequently Encountered Pipenv Problems

	Contribution Guides
	Development Philosophy
	Contributing to Pipenv

	☤ Pipenv Usage
	Indices and tables

